| taille du texte : S-M-L |
| impression | intranet

Construction of a central extension of a Lie group from its class of symplectic cohomology

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2010
auteur(s) De Saxce Géry; Vallee Claude
journal (abréviation) Journal of Geometry and Physics (J Geom Phys)
volume (numéro) 60 (2)
  
pages 165 – 174
résumé Bargmann’s group is a central extension of Galilei group motivated by quantum-theoretical considerations. Bargmann’s work suggests that one of the reasons of the failure of naïve attemps to construct actions on quantum wave functions has a cohomologic origin. It is this point, we develop in the context of Lie groups with symplectic actions. Studying the co-adjoint representation of a central extension of a group G, we highlight the link between the extension cocycles and the symplectic cocycles of G. Also, each extension coboundary corresponds to a symplectic coboundary. Finally, we emphasize the condition to be satisfied by the extension cocycle for the class of symplectic cohomology of the extension being null. The method is illustrated by application to Physics.
mots clés Symplectic geometry; Bargmann’s group; Heisenberg’s group
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).