| taille du texte : S-M-L |
| impression | intranet

On Self-Similarity in the Inner Wall Layer of a Turbulent Channel Flow

type de publication      article dans une revue internationale avec comité de lecture
date de publication 16-04-2010
auteur(s) Podvin Bérengère; Fraigneau Yann; Jouanguy Julien; Laval Jean-Philippe
journal (abréviation) Journal of Fluids Engineering (J. Fluids Eng.)
volume (numéro) 132 (4)
numéro de papier 041202
pages 1 – 15
résumé We use proper orthogonal decomposition (POD) to estimate the flow in the near-wall region based on information from the outer buffer layer. Our goal is to assess how the flow structures in the inner wall region are connected to those further away from the wall, and to investigate the nature of the coupling between the inner and the outer region in the POD framework. Reconstructions are carried out for numerical simulations of a plane channel flow at two different Reynolds numbers. We show that elongated structures with a spanwise wavelength smaller than a critical value tend to be concentrated in the inner layer. The critical wavelength is shown to scale with the inner layer height, and interactions between the inner and the outer layer appear to take place predominantly over a self-similar, height-dependent, range of wavenumbers, in agreement with Townsend's attached eddy hypothesis. The reconstructed field appears to capture an adequate energy content and to remain correlated with the real field even close to the wall, which reflects the persistence of energetic structures over the extent of the buffer layer.
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).