| taille du texte : S-M-L |
| impression | intranet

Non Maximal Cyclically Monotone Graphs and Construction of a Bipotential for the Coulomb's Dry Friction Law

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2010
auteur(s) Buliga Marius; De Saxce Géry; Vallee Claude
journal (abréviation) Journal of Convex Analysis (Journal of Convex Analysis)
volume (numéro) 17 (1)
  
pages 81 – 94
résumé We show a surprising connexion between a property of the inf convolution of a family of convex lsc functions and the fact that the intersection of maximal cyclically monotone graphs is the critical set of a bipotential.
We then extend the results from [4] to bipotentials convex covers, generalizing the notion of a bi-implicitly convex lagrangian cover.
As an application we prove that the bipotential related to Coulomb's friction law is related to a specific bipotential convex cover with the property that any graph of the cover is non maximal cyclically monotone.
mots clés Standard Materials; Contact Problems
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).