| taille du texte : S-M-L |
| impression | intranet

Measurement and analysis of turbulent length scales in jet flows

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2011
auteur(s) Kerherve Franck; Fitzpatrick John
journal (abréviation) Experiments in Fluids (Exp. Fluids)
volume (numéro) 50 (3)
pages 637 – 651
résumé The characteristic length and time scales of turbulence are reported in some detail for jet flows. The objective of the work is to determine the frequency dependence of these two-point turbulent properties, which are used to model the sources necessary for noise prediction using the acoustic analogy approach. A range of jet flow conditions for single and co-axial configurations are considered so that the effect of Mach number, temperature ratio and nozzle geometry is examined. The frequency dependence of both the fixed and moving frame length scales and the convection velocities for both the turbulence and the Reynolds stress are derived using a two-point complex coherence function. At higher frequencies, the integral scales are found to be strongly isotropic and inversely proportional to the Strouhal number. A frequency-dependent Taylor scale is derived and shown to agree well with the experimental results at the higher frequencies.
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).