| taille du texte : S-M-L |
| impression | intranet

Evaluation et amélioration des modèles numériques pour l'analyse de la stabilité des pentes

type de publication      thèse de doctorat
date de publication 22-04-2013
auteur(s) Liu Zaobao
jury J.F. Shao, D. Hoxgha, Q.U. Jiang, H.B. Bian, F. Fellet, T. Verdel
école Université Lille 1
  
résumé La rupture des pentes et l’éclatement des roches, qui représentent deux types de risques naturels fréquents dans le monde, peuvent engendrer des conséquences économiques importantes et des pertes en vie humaine. Malgré que les phénomènes soient étudiés depuis de longues années, il reste encore des questions ouvertes et sans réponse et il est donc encore nécessaire poursuivre les recherches sur cette thématique. Le présent travail de thèse est consacré la modélisation numérique de la stabilité des grandes pentes et de l’éclatement des massifs rocheux en utilisant des méthodes basées sur l’intelligence artificielle en proposant des modifications et des améliorations de telles méthodes.
En se basant sur des observations de déplacements de terrain, le glissement de terrain, qui est phénomène commun de la rupture de pentes, est étudié par le processus de Gauss afin de prédire son apparition temporelle. Ensuite, la question d’évaluation de la stabilité des pentes est abordée en utilisant la stratégie de machine à vecteurs de pertinence (RVM) avec des hyper-paramètres adaptatifs. Une approche itérative est proposée afin de déterminer les valeurs optimales des hyper-paramètres. Afin d’améliorer la prédiction, l’évaluation complète de la stabilité des pentes est réalisée en proposant un modèle basé sur la théorie de flou (CM) associé à un processus analytique d’hiérarchisation pondérée (WAHP). Ce modèle est utilisé à l’évaluation de la stabilité de la pente de rive gauche de la centrale hydroélectrique de Jinping 1, dans la région Sud-Ouest de Chine. Enfin, dans la dernière partie, la problématique de l’éclatement des massifs rocheux est abordée en utilisant des modèles basés sur la théorie du flou, en se basant sur une synthèse de 164 cas réels. Des comparaisons entre les résultats numériques et des données de terrain sont présentées pour de différents cas étudiés dans cette thèse.
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).