| taille du texte : S-M-L |
| impression | intranet

Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2014
auteur(s) Liu Zaobao; Shao Jian-Fu; Xu Weiya; Chen HJ; Shi C
journal (abréviation) Landslides (Landslides)
volume (numéro) 11 (5)
  
pages 889 – 896
résumé Landslide displacement is widely obtained to discover landslide behaviors for purpose of event forecasting. This article aims to present a comparative study on landslide nonlinear displacement analysis and prediction using computational intelligence techniques. Three state-of-art techniques, the support vector machine (SVM), the relevance vector machine (RVM), and the Gaussian process (GP), are comparatively presented briefly for modeling landslide displacement series. The three techniques are discussed comparatively for both fitting and predicting the landslide displacement series. Two landslides, the Baishuihe colluvial landslide in China Three Georges and the Super-Sauze mudslide in the French Alps, are illustrated. The results prove that the computational intelligence approaches are feasible and capable of fitting and predicting landslide nonlinear displacement. The Gaussian process, on the whole, performs better than the support vector machine, relevance vector machine, and simple artificial neural network (ANN) with optimized parameter values in predictive analysis of the landslide displacement.
mots clés Landslide, Displacement prediction, Nonlinear, Computational intelligence, Relevance vector machine, Gaussian process
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).