| taille du texte : S-M-L |
| impression | intranet

Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2015
auteur(s) El Moumen Ahmed; Kanit Toufik; Imad Abdellatif; El Minor H.
journal (abréviation) Computational Materials Science (Comput Mater Sci)
volume (numéro) 97
  
pages 148 – 158
résumé In this paper, the numerical homogenization technique and morphological analysis are used in order to compute the thermal conductivity in microscale of porous materials. The computational thermal homogenization is based on a 3D random material with spherical and ellipsoidal pores. Two types of microstructures are considered: microstructure 1 with random distribution of identical non overlapping pores and microstructure 2 with overlapping pores, based on the boolean model. The objective is to quantify the difference between these morphologies, in order to find some relationships between their morphological parameters and their macroscopic effective thermal conductivities. Periodic boundary conditions are applied on the representative volume element, RVE, of microstructures, for thermal modeling by finite element method. The covariance notion and integral range are introduced for morphological characterization. The deterministic RVE size is related with all microstructure parameters. The equivalent morphology concept for thermal conductivity is introduced after development of some relationships between morphological parameters.
mots clés Numerical homogenization; Representative volume element; Porous materials; Effective thermal conductivity; Morphological analysis; Equivalent morphology concept
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).