| taille du texte : S-M-L |
| impression | intranet

Critical probability of percolation over bounded region in N-dimensional Euclidean space

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2016
auteur(s) Roubin Emmanuel; Colliat Jean-Baptiste
journal (abréviation) Journal of Statistical Mechanics: Theory and Experiment (J Stat Mech Theor Exp)
volume (numéro) 2016
numéro de papier 033306
  
résumé Following Tomita and Murakami (Research of Pattern Formation ed R Takaki (Tokyo: KTK Scientific Publishers) pp 197–203) we propose an analytical model to predict the critical probability of percolation. It is based on the excursion set theory which allows us to consider N-dimensional bounded regions. Details are given for the three-dimensional (3D) case and statistically representative volume elements are calculated. Finally, generalisation to the N-dimensional case is made.
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).