| taille du texte : S-M-L |
| impression | intranet

Decay and growth laws in homogeneous shear turbulence

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2016
auteur(s) Briard Antoine; Gomez Thomas; Mons Vincent; Sagaut Pierre
journal (abréviation) Journal of Turbulence (Journal of Turbulence)
volume (numéro) 17 (7)
pages 699 – 726
résumé Homogeneous anisotropic turbulence has been widely studied in the past decades, both numerically and experimentally. Shear flows have received a particular attention because of the numerous physical phenomena they exhibit. In the present paper, both the decay and growth of anisotropy in homogeneous shear flows at high Reynolds numbers are revisited thanks to a recent eddy-damped quasi-normal Markovian closure adapted to homogeneous anisotropic turbulence. The emphasis is put on several aspects: an asymptotic model for the slow part of the pressure–strain tensor is derived for the return to isotropy process when mean velocity gradients are released. Then, a general decay law for purely anisotropic quantities in Batchelor turbulence is proposed. At last, a discussion is proposed to explain the scattering of global quantities obtained in DNS and experiments in sustained shear flows: the emphasis is put on the exponential growth rate of the kinetic energy and on the shear parameter.
mots clés Homogeneous turbulence, anisotropy, shear, EDQNM
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).