Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids

type de publication      article dans une revue internationale avec comité de lecture
date de publication 2008
auteur(s) Monchiet Vincent; Cazacu Oana; Charkaluk Eric; Kondo Djimédo
journal (abréviation) International Journal of Plasticity (Int J Plast)
volume (numéro) 24 (7)
  
pages 1158 – 1189
résumé The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.
mots clés A. Yield condition; B. Anisotropic material; B. Porous material; B. Ideally plastic material; A. Microstructures
lien lien  
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).