Simulation 2D et 3D des écoulements cavitants : développement d'un algorithme original dans CODE_SATURNE et étude de l'influence de la modélisation de la turbulence

type de publication      thèse de doctorat
date de publication 12-12-2014
auteur(s) Chebli Rezki
jury G. Mompean, D. Legendre, E. Goncalves, F. Bakir, A. Couzinet, T. Maitre, B. Audebert, O. Coutier-Delgosha
école Arts et Métiers ParisTech
  
résumé La cavitation est l’un des phénomènes physiques les plus contraignants influençant les performances des machines hydrauliques. Il est donc primordial de savoir prédire son apparition et son développement, et de quantifier les pertes de performances qui lui sont associées. L’objectif de ce travail est de développer un algorithme 3D instationnaire pour la simulation numérique de la cavitation dans le code industriel « Code_Saturne ». Il est basé sur la méthode à pas fractionnaires et préserve le principe du minimum/maximum sur le taux de vide. Un solveur implicite, basé sur l’équation de transport du taux de vide couplée avec les équations Navier-Stokes est proposé. Un traitement numérique spécifique des termes sources de cavitation permet d’obtenir des valeurs physiques du taux de vide (entre 0 et 1) sans aucune limitation artificielle. L’influence des modèles de turbulence RANS sur la simulation de la cavitation est étudiée sur deux types de géométries 2D (Venturi et Hydrofoil). Cela confirme que la modification de Reboud et al. (1998) appliquée aux modèles à viscosité turbulente à deux équations, k-epsilon et k-omega-SST, permet de reproduire les principales caractéristiques du comportement instationnaire de la poche de cavitation. Le modèle du second ordre RSM-SSG, basé sur le transport des contraintes de Reynolds, se révèle capable de reproduire le comportement instationnaire de l’écoulement sans aucune modification arbitraire. Les effets tridimensionnels intervenant dans les mécanismes d’instabilité de la poche sont également analysés. Ce travail nous permet d’aboutir à un outil numérique, validé sur des configurations d’écoulements cavitants complexes, afin d’améliorer la compréhension des mécanismes physiques qui contrôlent les effets instationnaires tridimensionnels intervenants dans les mécanismes d’instabilité.
Exporter la citation au format CSV (pour Excel) ou BiBTeX (pour LaTeX).